One equivalent of Schure's Inequality.

https://www.linkedin.com/feed/update/urn:li:activity:6528111651877720064 Let x, y, z be three non-negative real numbers such that $xy + yz + zx + xyz = 4$. Prove that: $x + y + z \ge xy + yz + zx$. When does equality occur?

Solution by Arkady Alt , San Jose ,California, USA.

Noting that the inequality obviously holds if at least one of the x, y, z equal to zero.. (indeed, let $z = 0$ then $xy + yz + zx + xyz = 4$ becomes $xy = 4$ and since $x + y \ge 2\sqrt{xy} = 4$ then $x + y + z \ge xy + yz + zx$ we assume further that $x, y, z > 0$.

Lemma.

All positive solutions of equation $xy + yz + zx + xyz = 4$ can be represented in the form $x = \frac{2a}{1}$ $\frac{2a}{1-a}$, $y = \frac{2b}{1-a}$ $\frac{2b}{1-b}$, $z = \frac{2c}{1-b}$ $\frac{2c}{1-c}$ where $a, b, c > 0$ and $a + b + c = 1$.

Proof.

First note that $x + 2 = \frac{2}{1}$ $\frac{2}{1-a} \Leftrightarrow 1-a = \frac{2}{x+2} \Leftrightarrow a = 1 - \frac{2}{x+2}$ $\frac{2}{x+2} = \frac{x}{x+1}$ $\frac{x}{x+2}$ and, similarly, we obtain $b = \frac{y}{y}$ $\frac{y}{y+2}$, $c = \frac{z}{z+1}$ $\frac{z}{z+2}$. Also note that $a+b+c=1 \Leftrightarrow \sum (1-a)=2 \Leftrightarrow$ $\sum \frac{2}{x+2} = 2 \Leftrightarrow xy + yz + zx + xyz = 4.$ Then by Lemma $x + y + z \geq xy + yz + zx \Leftrightarrow \sum \frac{2a}{1-a} \geq \sum \frac{2b}{1-b} \cdot \frac{2c}{1-a}$ $\frac{2c}{1-c} \Leftrightarrow$ $\sum \frac{a}{1-a} \ge 2 \sum \frac{ab}{(1-a)(1-b)} \Leftrightarrow \sum a(1-b)(1-c) \ge 2 \sum ab(1-c) \Leftrightarrow$ $\sum a(a+bc) \ge 2\sum ab(1-c) \Leftrightarrow a^2+b^2+c^2+3abc \ge 2(ab+bc+ca) -6abc \Leftrightarrow$ $9abc \ge 4(ab + bc + ca) - 1$, where latter inequality is Schur's Inequality $\sum a(a-b)(a-c) \ge 0$ normalized by $a+b+c=1$. (in homogeneous form $9abc \geq 4(a+b+c)(ab+bc+ca)-(a+b+c)^3$). Since for $a, b, c > 0$ equality in Schure's Inequality occurs iff $a = b = c$ then in case $x, y, z > 0$ original inequality equality occurs iff $x = y = z$, that is iff $x = y = z = 1$ (because the constraint becomes equation $3x^2 + x^3 = 4$ which in positive x has only one solution $x = 1$). If we allow zero values for x, y, z we have more cases of equality, namely if $x = y = z = 0$ or if $(x, y, z) \in \{(2, 2, 0), (2, 0, 2), (0, 2, 2)\}.$